Archive for the ‘Drones’ Category

As Lake Chad Shrinks Rapidly, Space Technology And Drones Are Needed To fight Africa’s Droughts

Via Quartz, a look at how emerging technological opportunities for improving environmental monitoring and the need to act in time could help manage crisis like Lake Chad:

Nigerian and Chadian officials are seeking $50 billion for a major water diversion project to replenish Lake Chad. This is nearly twice the annual GDP of Uganda. But it’s understandable, the lake has shrunk by nearly 90% between 1963 and today.

The plan involves diverting water from the Oubangi River in Central Africa to replenish the lake. It is estimated that the feasibility study alone would cost nearly $15 million. The proposed project would also provide irrigation, energy, and transportation infrastructure aimed at stimulating economic development.

With the election of Chadian foreign minister Moussa Faki Mahamat as chairperson of the African Union Commission, the project and the larger security concerns will remain a priority for the organization as well as for diplomatic interactions with other regions of the world.

Lake Chad offers a grim cautionary tale of how lessons from chronic drought might inform our anticipation of the potential impact of climate change in many parts of Africa. It shows the close interconnections between ecological change, security, and development. But it also points to emerging technological opportunities for improving environmental monitoring and the need to act in time.

rtxu2wg-copy

The lake straddles the borders of Cameroon, Chad, and Nigeria. This is the same region that is ravaged by the excesses of Boko Haram. It provides water for nearly 30 million people in the semi-arid Sahel region. Its overall basin is the largest closed drainage basin in the world covering 2.5 million square km, or about 8% of the African continent.

The prolonged Sahel drought from the late 1960s to the early 1980s reduced water flow into the lake. The drought, combined with population growth, pushed people in the catchment areas to expand irrigation. This further undercut the flow of water into the lake.

In 1972, the lake split into two, and was separated by a 40 km barrier. The southern lake is shallower and therefore more susceptible to evaporation. To restore the lake level, enough water would need to flow into the southern lake to overflow the barrier and replenish the northern lake. But this has been compromised by drought and irrigation. Simulation studies have shown that the failure of Lake Chad to merge back into a single water body following wetter periods in the 1990s resulted from irrigation. Without irrigation the lake would have probably merged in 1999, and again in 2004.

Lake Victoria’s challenge

The case of Lake Chad is too dramatic to contemplate. But other major water bodies such as Lake Victoria are vulnerable to similar, if not equivalent, impacts. Nearly 80% of the replenishment of Lake Victoria comes from rainfall, which feeds thousands of streams. The lake itself is relatively shallow, averaging 40 meters deep. A prolonged drought could affect large parts of the shoreline, destroying fish breeding areas and agriculture. This would put the lives of millions of people at risk.

 Consequences of a receding shoreline due to prolonged drought is unknown. But it would be foolhardy to wait and see. Some people would turn to irrigation, especially on the Kenyan side of the lake, which has the largest number of rivers flowing into it. This would reduce the inflow of water into the lake. Considerable water and land use conflicts would ensue, making them national security challenges. The ramifications would extend to East Africa’s relations with the Nile basin countries, especially Egypt.

Little is known of the consequences of even modest receding of the shoreline due to prolonged drought. But it would be foolhardy to wait and see. The first step in addressing the problem is to conduct real time monitoring of ecological trends in the region. One of the most effective tools available today is satellite technology.

African countries are only starting to explore the use of space technology. Climate change and regional ecological disruptions are already rendering historical maps and geographical data useless. Traditional knowledge is no longer an effective guide for environmental management in light of climate change. Policymakers need a fresh start using modern technologies.

Part of the slow adoption of satellite technology is the perception that space technology is too expensive. The popular and false image of the technology is derived from the last century, when the space programs were too expensive for emerging countries.

This perception has persisted despite dramatically falling costs of developing such programs. African countries can now establish viable space programs with about $300 million. The costs could be shared by neighboring countries. The East African Community, for example, could have one regional space program instead five separate ones.

More countries around the world are now focusing on small satellites, which are easier to build and launch in modular constellations. This is also making it possible for students in South Africa to participate in the design of small satellites and the accompanying scientific experiments.

The other major concern is that the few space initiatives that exist in Africa focus more on turnkey projects. Instead, they should stress building the requisite human capacity needed to rise up the space ladder. The best place to build such capacity is in universities, not in secretive departments in government ministries.

The lifespan of a satellite is about 10 years. Countries that do not invest in continuous training quickly see their ground facilities rendered obsolete by technological change. A space program only functions effectively when it is supported by a strong human resource foundation on the ground.

The future of environmental monitoring is being transformed by the increased use emerging technologies such as civilian drones. Climate change offers Africa yet another reason to leverage the drones to complement satellite technology. Increasing the installation of weather stations across Africa would provide additional support for environmental monitoring. According to Gro Intelligence, the land mass of sub-Saharan Africa is 35 times that of Texas. Yet the two have nearly the same number of weather stations.

The long-term contribution of such efforts lies in building strong institutions of higher learning attached to major infrastructure projects. Such universities can then work with networks of technical institutes and high schools to broaden the base for competence in environmental management.

Investments in human resource development, especially in the engineering fields, will help African countries reduce the maintenance costs of infrastructure projects. Given the magnitude of the financial outlays needed for climate change abatement projects, the continent needs low-cost ways of providing evidence-based advice for the design, implementation and maintenance of infrastructure investments. Ways to do this include expanding the engineering divisions of African scientific academies as well as creating dedicated academies of engineering.

The specter of climate change will continue to haunt Africa. But it also offers new opportunities for tapping into emerging technologies for environmental monitoring to address improve development planning and identify emerging security challenges. Such anticipatory work might give the continent the knowledge needed to respond in time to ecological disasters.

,

Read More »



Drones Could Help Save The Environment

Via BRIC+ New World News, a look at the growing impact of drones on conservation:

Unmanned aerial vehicles (UAVs), popularly known as drones, have the potential to revolutionise ecology and conservation, according to a study at New Zealand’s Monash University.

The report, published in the journal Scientific Reports, posits that drones are much more effective at monitoring the size of seabird colonies than traditional ground-counting methods.

“Until now, it has been unclear as to how precise drone technology might be when monitoring the size of populations of wildlife. Our latest research has demonstrated that a very high degree of precision can be achieved when using drone technology to monitor wildlife,” said Dr Rohan Clarke, ecologist at Monash University and one of the authors of the report.

Drones have long been used, primarily, for military purposes. However, in recent years, with many commercial models hitting the shelves, their uses have expanded tremendously. Recreational use is but one new market. Drones are tipped to become increasingly important in ecology and conservation.

UAVs have already been used to monitor elephant populations and nesting birds, however, their efficacy was not yet tested – until now. The report conducted two monitoring exercises on Ashmore Reef and Macquarie Island.

One experiment used traditional ground methods, the other used drones. The difference in precision was startling.

drone photos report

The researchers noted that drone counts were consistently larger than those conducted on the ground. The report claims that drone monitoring makes calculating fluctuations in population size much more accurate.

Not only this, but photographs of populations taken by drones were more clear, and drones had the added benefit of little disruption to the natural population.

“Our team compared the precision of drone-derived image counts with those made at the same time by human counters on the ground for colonies of three types of seabird: frigatebirds, terns and penguins.

“Counters also monitored the colonies during the drone flights for signs that the birds may be startled by the presence of the drone,” said Jarrod Hodgson, lead author of the report.

The results of the Monash University study have already begun to excite ecologists, who see this technology as a likely game-changer in the field of conservation.
 
“The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology,” reads the report.
 
The future of conservation may be here sooner than we think.

,

Read More »



Conservation Technology

Courtesy of The Wall Street Journal, an interesting article on conservation technologist Shah Selbe’s use of data and drones to protect the planet:

Mr. Selbe, a Jacques Cousteau fan who grew up snorkeling and scuba-diving near Riverside, Calif., was looking for innovative ways to use technology to protect the planet. That is what he’s been doing ever since—while keeping his rocket-science day job at Boeing, which hired him straight out of college.

A self-described “conservation technologist,” Mr. Selbe, 33, combines mobile technology, satellite data and drones to better protect the environment. Used together, “these devices can watch over areas in ways that no single person could ever do,” he says.

As a graduate student at Stanford University, Mr. Selbe created an open-source, low-cost platform to pull data from satellites, drones and other monitoring systems to help identify illegal and unregulated fishing in the world’s oceans—a problem that preoccupies conservationists, who warn that overfishing could lead to a crash in world-wide fish stocks in the next three decades.

Mr. Selbe has developed a similar open-source system to monitor illegal wildlife trafficking and threats to water and air quality in Botswana’s Okavango Delta. “We want it to be open-source and used by the most people who can,” he says. “There’s a lot we gain by sharing information.” Starting last year, with support from the National Geographic Society (whose magazine employed me until 2014), Mr. Selbe worked with colleagues to set up hubs in the region, outfitted with solar-powered sensor platforms to gather data and rush details to communities on the ground via cellular networks.

The system has pinpointed problems at the local level. In one area of the Okavango Delta, data earlier this year indicated sudden, conspicuous changes in the water’s pH. “I thought the sensor was off,” Mr. Selbe says. It wasn’t: Tour boats were idling in that part of the delta, with their engines spewing toxins, making pollution concentrate in the water. Mr. Selbe and his team worked with the boat drivers to find better places to park and discouraged them from letting engines idle, letting the water quality return to normal.

In separate projects, Mr. Selbe has also deployed drones to patrol coastal regions and used hydrophones—underwater microphone networks—to detect noise from fishing vessels illegally entering protected ocean waters. Too often, Mr. Selbe says, those who monitor illegal fishing have had to just “jump in a boat until they see something.”

In the seven years since Mr. Selbe began his conservation-technology efforts, his expertise has been tapped by the State Department, the Pew Environment Group and the Pacific island nation of Palau, among others. He envisions an “Internet of environmental things” in which entire nature reserves can be connected via smart technology to spot and reduce threats. “None of this is hugely groundbreaking from a technological perspective alone,” he says. “But from a technological and conservation perspective, it is.”

,

Read More »



To Take Earth’s Pulse, You Have To Fly High

Courtesy of National Geographic, an interesting article on the use of satellite and airborne sensors to assess the environment:

The view out the window was bad enough. As his research plane flew over groves of California’s giant sequoias, some of the world’s tallest trees, Greg Asner could see the toll the state’s four-year drought had taken. “It looked wicked dry down there,” he said. But when he turned from the window to the video display in his flying lab, the view was even more alarming. In places, the forest was bright red. “It was showing shocking levels of stress,” he said.

The digital images were coming from a new 3-D scanning system that Asner, an ecologist with the Carnegie Institution for Science, had just installed in his turboprop aircraft. The scanner’s twin lasers pinged the trees, picking out individual branches from 7,000 feet up. Its twin imaging spectrometers, one built by NASA’s Jet Propulsion Laboratory (JPL), recorded hundreds of wavelengths of reflected sunlight, from the visible to the infrared, revealing detailed chemical signatures that identified each tree by species and even showed how much water it had absorbed—a key indicator of health. “It was like getting a blood test of the whole forest,” Asner said. The way he had chosen the display colors that day, trees starved of water were bright red. 

Disturbing as the images were, they represented a powerful new way of looking at the planet. “The system produces maps that tell us more about an ecosystem in a single airborne overpass,” Asner wrote later, “than what might be achieved in a lifetime of work on the ground.” And his Carnegie Airborne Observatory is just the leading edge of a broader trend.

A half century after the first weather satellite sent back fuzzy pictures of clouds swirling over the North Atlantic, advanced sensors are doing for scientists what medical scanners have done for doctors—giving them ever improving tools to track Earth’s vital signs. In 2014 and early 2015 NASA launched five major Earth-observing missions (including two new instruments on the space station), bringing its total to 19. Space agencies from Brazil, China, Europe, and elsewhere have joined in. “There’s no question we’re in a golden age for remote sensing,” said Michael Freilich, NASA’s earth science director.
Picture of Carnegie Institution for Science's plane documenting the California drought Four years of drought have taken a harsh toll on California’s farms and forests. Last spring Greg Asner and his team flew over the Sierra Nevada, home to sequoias and other giant trees. With the new instruments on their airplane, the researchers completed in days a damage survey that would have taken a lifetime from the ground.
The news from all these eyes in the sky, it has to be said, is mostly not good. They bear witness to a world in the midst of rapid changes, from melting glaciers and shrinking rain forests to rising seas and more. But at a time when human impacts on Earth are unprecedented, the latest sensors offer an unprecedented possibility to monitor and understand the impacts—not a cure for what ails the planet, but at least a better diagnosis. That in itself is a hopeful thing.
In California the water crisis has turned the state into something of a laboratory for remote-sensing projects. For the past three years a NASA team led by Tom Painter has been flying an instrument-packed aircraft over Yosemite National Park to measure the snowpack that feeds the Hetch Hetchy Reservoir, the primary source of water for San Francisco.
Until now, reservoir managers have estimated the amount of snow on surrounding peaks the old-fashioned way, using a few gauges and taking surveys on foot. They fed these data into a statistical model that forecast spring runoff based on historical experience. But lately, so little snow had fallen in the Sierra Nevada that history could offer no analogues. So Chris Graham, a water operations analyst at Hetch Hetchy, accepted the NASA scientists’ offer to measure the snowpack from the sky.
Painter’s Twin Otter aircraft, called the Airborne Snow Observatory, was equipped with a package of sensors similar to those in Greg Asner’s plane: a scanning lidar to measure the snow’s depth and an imaging spectrometer to analyze its properties. Lidar works like radar but with laser light, determining the plane’s distance to the snow from the time it takes the light to bounce back. By comparing snow-covered terrain with the same topography scanned on a snow-free summer day, Painter and his team could repeatedly measure exactly how much snow there was in the entire 460-square-mile watershed. Meanwhile the imaging spectrometer was revealing how big the snow grains were and how much dust was on the surface—both of which affect how quickly the snow will melt in the spring sun and produce runoff. “That’s data we’ve never had before,” Graham said.
Painter also has been tracking shrinking snowpacks in the Rocky Mountains, which supply water to millions of people across the Southwest. Soon he plans to bring his technology to other mountainous regions around the world where snow-fed water supplies are at risk, such as the Himalayan watersheds of the Indus and Ganges Rivers. “By the end of the decade, nearly two billion people will be affected by changes in snowpacks,” he said. “It’s one of the biggest stories of climate change.”
With less water flowing into California’s rivers and reservoirs, officials have cut back on the amount of water supplied to the state’s farmers, who typically produce about half the fruits, nuts, and vegetables grown in the U.S. In response, growers have been pumping more water from wells to irrigate fields, causing water tables to fall. State officials normally monitor underground water supplies by lowering sensors into wells. But a team of scientists led by Jay Famiglietti, a hydrologist at the University of California, Irvine, and at JPL, has been working with a pair of satellites called GRACE (for Gravity Recovery and Climate Experiment) to “weigh” California’s groundwater from space.

The satellites do this by detecting how changes in the pull of Earth’s gravity alter the height of the satellites and the distance between them. “Say we’re flying over the Central Valley,” Famiglietti said, holding a cell phone in each hand and moving them overhead like one satellite trailing the other. “There’s a certain amount of water down there, which is heavy, and it pulls the first satellite away from the other.”

The GRACE satellites can measure that to within 1/25,000 of an inch. And a year later, after farmers have pumped more water out of the ground, and the pull on the first satellite has been ever so slightly diminished, the GRACE satellites will be able to detect that change too.

Depletion of the world’s aquifers, which supply at least one-third of humanity’s water, has become a serious danger, Famiglietti said. GRACE data show that more than half the world’s largest aquifers are being drained faster than they can refill, especially in the Arabian Peninsula, India, Pakistan, and North Africa.

Since California’s drought began in 2011, the state has been losing about four trillion gallons a year (more than three and a half cubic miles) from the Sacramento and San Joaquin River Basins, Famiglietti said. That’s more than the annual consumption of the state’s cities and towns. About two-thirds of the lost water has come from aquifers in the Central Valley, where pumping has caused another problem: Parts of the valley are sinking.

Tom Farr, a geologist at JPL, has been mapping this subsidence with radar data from a Canadian satellite orbiting some 500 miles up. The technique he used, originally developed to study earthquakes, can detect land deformations as small as an inch or two. Farr’s maps have shown that in places, the Central Valley has been sinking by around a foot a year.

One of those places was a small dam near the city of Los Banos that diverts water to farms in the area. “We knew there was a problem with the dam, because water was starting to flow up over its sides,” said Cannon Michael, president of Bowles Farming Company. “It wasn’t until we got the satellite data that we saw how huge the problem was.” Two sunken bowls had formed across a total of 3,600 square miles of farmland, threatening dams, bridges, canals, pipelines, and floodways—millions of dollars’ worth of infrastructure. In late 2014 California governor Jerry Brown signed the state’s first law phasing in restrictions on groundwater removal.

As evidence has mounted about Earth’s maladies—from rising temperatures and ocean acidification to deforestation and extreme weather—NASA has given priority to missions aimed at coping with the impacts. One of its newest satellites, a $916 million observatory called SMAP (for Soil Moisture Active Passive), was launched in January. It was designed to measure soil moisture both by bouncing a radar beam off the surface and by recording radiation emitted by the soil itself. In July the active radar stopped transmitting, but the passive radiometer is still doing its job. Its maps will help scientists forecast droughts, floods, crop yields, and famines.

“If we’d had SMAP data in 2012, we easily could have forecast the big Midwest drought that took so many people by surprise,” said Narendra N. Das, a research scientist at JPL. Few people expected the region to lose about $30 billion worth of crops that summer from a “flash drought”—a sudden heat wave combined with unusually low humidity. “SMAP data could have shown early on that the region’s soil moisture was already depleted and that if rains didn’t come, then crops were going to fail,” Das said. Farmers might not have bet so heavily on a bumper crop.

Climate change also is increasing the incidence of extreme rains—and SMAP helps with that risk too. It can tell officials when the ground has become so saturated that a landslide or a downstream flood is imminent. But too little water is a more pervasive and lasting threat. Without moisture in the soil, a healthy environment breaks down, as it has in California, leading to heat waves, drought, and wildfires. “Soil moisture is like human sweat,” Das said. “When it evaporates, it has a cooling effect. But when the soil is devoid of moisture, Earth’s surface heats up, like us getting heatstroke.”

Despite all the challenges to Earth’s well-being, the planet so far has proved remarkably resilient. Of the 37 billion metric tons or so of carbon dioxide dumped into the atmosphere each year by human activities, oceans, forests, and grasslands continue to soak up about half. No one knows yet, however, at what point such sinks might become saturated. Until recently, researchers didn’t have a good way to measure the flow of carbon in and out of them.

That changed in July 2014, when NASA launched a spacecraft called the Orbiting Carbon Observatory-2. Designed to “watch the Earth breathe,” as managers put it, OCO-2 can measure with precision—down to one molecule per million—the amount of CO? being released or absorbed by any region of the world. The first global maps using OCO-2 data showed plumes of CO? coming from northern Australia, southern Africa, and eastern Brazil, where forests were being burned for agriculture. Future maps will seek to identify regions doing the opposite—removing CO? from the atmosphere.

Greg Asner and his team also have tackled the mystery of where all the carbon goes. Prior to flying over California’s woodlands, they spent years scanning 278,000 square miles of tropical forests in Peru to calculate the forests’ carbon content.

At the time, Peru was in discussions with international partners about ways to protect its rain forests. Asner was able to show that forest areas under the most pressure from logging, farming, or oil and gas development also were holding the most carbon—roughly seven billion tons. Preserving those areas would keep that carbon locked up, Asner said, and protect countless species. In late 2014 the government of Norway pledged up to $300 million to prevent deforestation in Peru.

Within the next few years NASA plans to launch five new missions to study the water cycle, hurricanes, and climate change, including a follow-up to GRACE. Smaller Earth-observing instruments, called CubeSats—some tiny enough to fit into the palm of a hand—will hitch rides into space on other missions. For scientists like Asner, the urgency is clear. “The world is in a state of rapid change,” he said. “Things are shifting in ways we don’t yet have the science for.”

Within the next decade or so the first imaging spectrometer, similar to the ones used by Asner and Painter, could be put into Earth orbit. It would be like “Star Trek technology” compared with what’s up there now, Painter said. “We’ve orbited Jupiter, Saturn, and Mars with imaging spectrometers, but we haven’t had a committed program yet for our own planet,” he said. The view from such a device would be amazing: We’d be able to see and name individual trees from space. And we’d be reminded of the larger forest: We humans and our technology are the only hope for curing what we’ve caused.

Earth’s vital signs are monitored by NASA’s 19 Earth-observing missions. Ten of the most critical, shown here, circle the globe up to 16 times a day, collecting data on climate, weather, and natural disasters.
————————————————————————-
Map showing atmospheric carbon dioxide in the world
WHAT THIS IS It’s a map of atmospheric carbon dioxide over land last summer, made by NASA’s OCO-2 satellite. Red areas have a bit more CO?, green areas a bit less, than the global average of 400 parts per million.

WHAT THIS TELLS US Forests and oceans have slowed global warming by soaking up some of the CO? we emit. OCO-2 will shed light on where exactly it’s going—and on how fast the planet could warm in the future.

Forests

Picture of a rainforest in Panama using a lidar device

WHAT THIS IS The Carnegie Airborne Observatory made this image of rain forest in Panama with its scanning lidar, which probes the trees’ size and shape, and a spectrometer that charts their chemical composition.

WHAT THIS TELLS US The technique allows Asner’s team, flying at 7,000 feet, to identify individual trees from their chemical signatures—and even to say how healthy they are. The reddish trees here (the colors are arbitrary) are growing the fastest and absorbing the most CO?.

Water

Picture of a rainforest in Peru using a lidar device

WHAT THIS IS It’s an image of the Tambopata River in eastern Peru made by the scanning lidar aboard the Carnegie observatory.

WHAT THIS TELLS US The area in this image is actually covered with rain forest. Some lidar pulses penetrate the forest and reflect off the ground, revealing the subtle topography—red is a few feet higher than blue—and faint, abandoned river channels that have shaped the forest and helped create its rich biodiversity.

Land

Picture of California and Nevada taken from space WHAT THIS IS NASA’s Aqua satellite captured these visible-light images of California and Nevada on March 27, 2010 (left), the most recent year with normal snowfall, and on March 29, 2015 (right).

WHAT THIS TELLS US After four years of drought, the snowpack in the Sierra Nevada—a crucial water reservoir for California—is just 5 percent of the historical average. Snow has virtually vanished from Nevada. And west of the Sierra, in the Central Valley, much of the fertile farmland is fallow and brown.

Picture of Portugal and Spain from space No one gets a better look at how we’ve transformed Earth—and conquered night—than astronauts on the space station. The view here is to the north over Portugal and Spain. The green band is the aurora.

,

Read More »



China To Use Satellites, Drones To Monitor Pollution

Via Eco-Business, an interesting report on a new Chinese initiative to use technology to monitor their environment:

China will build a comprehensive network to detect pollution of the land, sea and air by 2020, employing satellites, drones and remote sensors to monitor the environment.

The national leadership approved the network plan in July, saying the government will lead the monitoring, share information among departments and regions, and be held accountable if violations are found, the Ministry of Environmental Protection said on Tuesday.

Satellites, a major tool for monitoring air pollution, will receive a boost this year. The ministry said it will accelerate research on two atmospheric environmental monitoring satellites and two satellites with higher resolution than those currently available.

The ministry will improve a remote sensor network, guided by the goals of the 13th Five-Year Plan (2016-20), which is scheduled to be released at the end of this year, according to the ministry’s Environmental Supervision Department.

Remote monitoring has played a bigger role in locating pollution sources. Drones helped authorities locate polluted areas in the Tengger Desert in northern China and identify scattered summer straw burnings.

Hebei province, which has a serious air pollution problem, has cooperated with the ministry’s Satellite Environment Center to conduct monitoring from satellites and monitoring stations since January last year.

“We used the data from the center’s satellites to forecast the movement of smog during the Asia-Pacific Economic Cooperation meetings in November,” Zhang Feng, an engineer in the Environmental Supervision Department of the provincial environmental watchdog, said on Tuesday.

Data collected from monitoring stations helped authorities provide accurate forecasts on hazy days during that period, he said.

Currently, the environmental satellites are used as support tools, as there are not enough of them, Zhang said. After the province builds a system to analyze and process data by the end of this year, the satellites will become more important.

The ministry will also strengthen the supervision of data collected through multiple channels, which is “important to keep the environmental management policies and measures effective and scientific”, Chen Jining, the environmental minister, said in July.

,

Read More »



Aerial Ecology: Drones Collect Environmental DNA (eDNA)

Via MIT’s , an interesting report on the use of drones to advance ecological studies:

Drones carrying cameras or infrared sensors have already found favor with farmers, police forces, and extreme sports enthusiasts. Now engineers are testing versions of the tiny craft that can do more than just observe.

Prototypes able to swoop down to scoop up water samples are being developed to help ecologists, the oil industry, and others track oil leaks or invasive species. Some can even perform rudimentary analysis on the water they collect.

Commercial drone company PrecisionHawk, of Raleigh, North Carolina, is testing a water sampling drone with some clients in the oil industry. It takes the form of a seaplane and has a pump mounted on its pontoons that can handle even viscous swampwater thick with bugs, mud, or algae. The water is sucked into a container and then carried to a lab to check for signs of oil leaks or spills. (See a short video of the drone in action.)

“If you go up to Northern Canada or Alaska, there are literally thousands of ponds and lakes that are a few acres in size,” says PrecisionHawk CEO Ernest Earon. “Trying to walk through or take a boat to get water samples, it’s an almost impossible task.”

Earon says his team is now researching the possibility of a drone carrying a small spectrometer to analyze water for itself. That would save on energy-draining trips back to the lab.

YangQuan Chen, an engineering professor at the University of California, Merced, is testing a quadcopter drone with a buoyant frame that lands on water to collect a sample to be whisked to back to a lab for DNA extraction and sequencing.

The goal is to collect what is called environmental DNA, or eDNA, left behind by plants, animals, or other organisms. Analyzing eDNA provides a way to track diseases and endangered or invasive species. The technique is used to track populations of invasive Asian Carp around the Great Lakes, for example. Grabbing water samples by drone could make the approach more powerful by covering larger areas, says Chen. “There are some places that cannot be reached by boat or vehicle,” says Chen. “You simply cannot go there, so you have to use a drone.”

Chen says his biggest challenge has been to work out a way for the drone to land on moving water or during inclement weather. An onboard sensor registers wind gusts and software adjusts thrust in turn. The drone can scoop up water, but the researchers have not sequenced eDNA in the samples it collected.

In the long term, miniaturization of high-throughput genetic sequencing devices could allow drones to analyze their own samples, says geneticist Mike Miller of the University of California, Davis, who is collaborating with Chen. “Maybe in not that long, there’ll be drones deployed all over California, dipping down into water, sequencing all of the DNA on the fly and sending the data back to a central location,” Miller says.

Carrick Detweiler, an assistant professor of computer science and engineering at the University of Nebraska-Lincoln, is working on a similar drone he calls a “Co-Aerial Ecologist.” It uses a one-meter dangling tube to suck water onboard like a straw. With water stored in onboard vials, it can then measure the samples’ temperature or conductivity (a proxy for salinity).

At a popular recreation area in Nebraska, Detweiler’s drone has already sampled from a series of small manmade lakes for toxic algae. The task routinely takes a crew of humans 12 to 14 hours, but the drone can do it in about two. The drone has also been used to search Nebraska waterways for the larvae of the invasive zebra mussel.

Detweiler predicts that there will soon be many more hands-on drones appearing. “The next generation of vehicles five to 10 years from now will be capable of getting really close to the environment, like water-sampling or collecting leaf samples,” he says. Detweiler has begun work on a drone that plucks leaves from crops with a mechanical arm, to determine the health of plants, or identify the exact variety of a weed infesting a corn field.

Chen hopes that drones like these could become cheap enough for just about anybody to use. PrecisionHawk’s seaplane drone costs $16,500 even without water sampling gear, which is scheduled to be available as an optional extra later this year. That’s cheap for oil companies but too expensive for many environmental organizations or scientists.

Chen believes that his design could lead to a water sampling drone that costs only $1,000. He envisions ecologists and even journalists being able to routinely sample bodies of water for analysis at the lab, providing a new layer of environmental oversight. “We need to make it affordable,” he says.

,

Read More »


ABOUT
Networked Nature
New technical innovations such as location-tracking devices, GPS and satellite communications, remote sensors, laser-imaging technologies, light detection and ranging” (LIDAR) sensing, high-resolution satellite imagery, digital mapping, advanced statistical analytical software and even biotechnology and synthetic biology are revolutionizing conservation in two key ways: first, by revealing the state of our world in unprecedented detail; and, second, by making available more data to more people in more places. The mission of this blog is to track these technical innovations that may give conservation the chance – for the first time – to keep up with, and even get ahead of, the planet’s most intractable environmental challenges. It will also examine the unintended consequences and moral hazards that the use of these new tools may cause.Read More