Archive for January, 2023

11 Innovations Deepening Our Understanding Of The Ocean Through Data

Via the World Economic Forum, a look at 11 innovations deepening our understanding of the ocean through data:

80% of our ocean remains unmapped, unobserved and unexplored.

That is why it is so important to deepen our understanding of the ocean through innovation.

UpLink and Friends of Ocean Action launched the Ocean Data Challenge, calling for solutions to boost ocean conservation and promote a sustainable blue economy.

11 winners have been selected and will become a part of the UpLink Innovation Network, gaining access to a mentoring programme and the World Economic Forum’s network and partners.

Humans now have the ability to observe and understand the Earth’s surface with astonishing accuracy. Be it monitoring carbon emissions from a single source, documenting war crimes in conflict zones, or leveraging Internet of Things (IoT) sensors to detect wildfires, one could be forgiven for thinking we know all there is to know about our planet. Yet in reality, the majority of our planet, the ocean, remains a ‘blue box’ in comparison with our terrestrial environment.

The United States National Oceanic and Atmospheric Administration (NOAA) estimates that “80% of our ocean is unmapped, unobserved and unexplored”. Such a dearth of ocean data limits our ability to account for the value of the ocean, to make wise ocean management decisions, and to protect and conserve our marine ecosystems from existing and emerging threats. This is why the High Level Panel for A Sustainable Ocean Economy has identified Ocean Knowledge as an essential area of transformation needed to sustainably manage the ocean.

Rising to the challenge of deepening our understanding of the ocean are innovations in sensors, satellites, artificial intelligence, autonomous underwater vehicles and more. Seeking to elevate the best of these innovators, UpLink & Friends of Ocean Action launched the Ocean Data Challenge, supported by the Benioff Ocean Science Laboratory, Canada’s Ocean Supercluster, EMODnet, Fugro, HUB Ocean, Planet, The Economist Impact’s World Ocean Initiative, and Tidal | X – the Moonshot Factory. This challenge responded to the UN Decade of Ocean Science for Sustainable Development’s (UN Ocean Decade) call for the creation of a global ocean data ecosystem to connect businesses, organizations and government data providers.

The Ocean Data Challenge was a global call for start-ups and social enterprises that leverage and/or contribute to the global ocean data ecosystem and which demonstrate the applications for ocean data to boost ocean conservation and promote the sustainable blue economy. The identified innovators are working to advance our ocean knowledge in four important ways:

1. Advancing ocean data analytics
2. Generating community-level data and data designed to drive decisions
3. Developing commercial uses for public or open-source data resources
4. Building novel means of data collection

W-Sense has developed technology and data solutions enabling an “Internet of Underwater Things”. Their technology works with a wide range of sensors: up to 3000 meters data solutions permitting the operation of real-time monitoring networks across large areas, including multiple underwater assets.

Terradepth provides Ocean Data as a Service (ODaaS) beginning with their autonomous underwater vehicles (AUV) through to data delivery on their custom, cloud-based user interface. Terradepth leverages its technology and data platforms to make the ocean “virtual”.

Ocean Data Network turns fishing vessels into ocean data miners, equipping fishing gear with IoT sensors. This low-cost, highly scalable model is addressing critical ocean data collection gaps, particularly in coastal areas.

Ellipsis Earth has developed an end-to-end, AI-based technology that can use imagery from multiple platforms (drones, cameras, etc) to identify and map environmental waste by type, weight, volume, impact, carbon footprint, material, brand and recycling value.

BioConsult and HiDef Aerial Surveying LTD have developed the SPACEWHALE service which uses satellite imagery at a .31m resolution and AI to significantly increase our ability to map and count whales globally. Their technology can even distinguish between species and identify juveniles and adults.

SINAY combines various sources of ocean and maritime data with AI through its Sinay Hub, generating valuable insights for maritime stakeholders including offshore energy, ports, and shipping companies. Sinay also monitors air, water, and noise pollution to predict the impact on biodiversity and assists companies in reducing their environmental footprints.

Jet Connectivity is bringing the power of 5G to the ocean. Their first-of-its-kind buoy platforms can accommodate a variety of sensors, cameras, radars, etc., and transmit large amounts of data at high speeds. This technology has the potential to revolutionize the way and speed with which we collect, analyze and act on ocean data.

Planblue GMBH builds “underwater satellites” to generate highly detailed maps of the sea floor. With the assistance of machine learning, these maps can be augmented with precise estimates of the coverage and health of marine habitats like seagrass and coral.

Advanced Navigation seeks to create a “drone revolution” with its Hydrus underwater drone. This device features state-of-the-art maritime technology that, combined with its high portability and affordability, will make subsea robotics accessible to more people and companies than ever before.

BIOCEANOR combines the best of marine biology and data science to provide water quality insights that the aquaculture industry can use to optimize its operations. Their AquaReal service is the first in the world to provide advanced dissolved oxygen forecasting up to 48hrs in advance.

SeaSketch – is a powerful, unparalleled and open-source tool for ocean planning developed by the National Center for Ecological Analysis and Synthesis based at the University of California Santa Barbara. SeaSketch allows communities of any scale to identify important or valuable ocean places, what they do (e.g., fish), how they do it (e.g., what gear), what they may extract (e.g., what species) and the relative value (monetary, spiritual, time spent) of each space they draw.

,

Read More »



Five Revolutionary Technologies Helping Scientists Study Polar Bears

Via Smithsonian Magazine, a look at how researchers are using novel technologies to study polar bears, which live in the rapidly warming Arctic:

When they’re born, polar bears are toothless and blind, and they weigh roughly a pound. But over time—thanks to lots of fat-rich milk and protection from their mother—these helpless cubs grow to become large, powerful predators that are perfectly adapted for their Arctic environment. Though temperatures can dip to minus 50 degrees Fahrenheit in the winter, the massive marine mammals—which live in Canada, Norway, Russia, Greenland and Alaska—stay warm with a thick layer of body fat and two coats of fur. Their huge paws help them paddle through the icy water and gently walk across sea ice in search of their favorite meal, seals.

Their size, power, intelligence and environmental adaptions have long intrigued humans living in the north, including many Indigenous communities, such as the Inuit, the Ket and the Sámi. Biologists are curious about Ursus maritimus for many of the same reasons.

“Bears are fascinating,” says B.J. Kirschhoffer, director of conservation technology at Polar Bears International. “For me, when standing on a prominent point overlooking sea ice, I want to know how any animal can make a living in that environment. I am curious about everything that makes them able to grow to be the biggest bear by living in one of the harshest places on this planet. There is still so much to learn about the species—how they use energy, how they navigate their world and how they are responding to a rapidly changing environment.”

Today, researchers and conservationists want to know about these highly specialized marine mammals because human-caused climate change is reshaping their Arctic habitat. The bears spend much of their time on sea ice hunting for seals. But as temperatures in the Arctic rise, sea ice is getting thinner, melting earlier in the spring and forming later in the fall. Pollution and commercial activity also threaten the bears and their environment. An estimated 26,000 polar bears roam the northern reaches of the world, and conservationists worry they could disappear entirely by 2100 because of global warming.

But investigating mostly solitary creatures who spend much of their time wandering around sea ice, in some of the most remote and rugged places on the planet, is expensive, logistically challenging and dangerous to researchers. For help, scientists are turning to technology. These five innovations are changing the way they study polar bears.

Sticky tracking devices

Researchers can twist three black bottle brushes into a sedated bear’s fur to attach a triangular plate equipped with a tracking device. 3M
Much of what scientists know about polar bears comes from tracking female members of the species. This is largely due to anatomical differences between the sexes: Males have small heads and thick necks, which means tracking collars can easily slip right off. Females, on the other hand, have larger heads and thinner necks.

Neck collars are out of the question for males, and they’re not ideal for young bears, which can quickly outgrow the devices. Other options—like implants—require the bears to undergo minor surgery, which can be potentially risky to their health. Ear tags don’t require surgery, but they are still invasive. They’re also permanent, and polar bear researchers strive to make as minimal an impact on the bears as possible. How, then, can scientists attach tracking devices to young bears and male polar bears?

This was the challenge put to innovators at 3M, the Minnesota-based company that makes everything from medical devices to cleaning supplies to building materials. 3M is particularly good at making things sticky—its flagship products include Post-it Notes and Scotch Tape.

Jon Kirschhoffer spent his nearly 40-year career at 3M as an industrial designer, developing novel solutions to complex problems just like this one. So when B.J. Kirschhoffer, his son, started chatting about the need for a new, noninvasive way of attaching trackers to polar bears, Jon’s wheels started turning. He brought the problem to his colleagues, who set to work studying polar bear fur and building prototypes.

Crimping Device For Polar Bear Fur

One of the most promising designs draws inspiration from the human process of attaching hair extensions. 3M
In the end, they landed on two promising “burr on fur” approaches. One device uses three bottle brushes—small, tubular brushes with a long handle made of twisted metal wire that could fit inside the neck of a skinny bottle—to grab onto clumps of a sedated bear’s fur. They also have the option of applying a two-part epoxy to the bottle brushes to help hold the bear’s fur more securely. Scientists and wildlife managers can use the brushes to firmly attach a triangular plate that contains a tracking device between the animal’s shoulder blades. In tests, the researchers have sedated the animals before attaching the trackers, but some zoos are training their bears to accept the tags while fully alert.

“It’s like a burr: You twist and entangle the fur in the bottle brush, then bend over the handle so it doesn’t untwist,” Jon says. “We do that on three sides and put a little protective cap over it so it’s less likely to get snagged on willows and brush and other things that bears walk through.”

The other option draws inspiration from the process hair stylists use to attach hair extensions to their human clients’ heads. This pentagonal design involves extending a loop of a fishing leader down through five metal ferrules, or tubes; lassoing some hair on a sedated polar bear; and pulling it back through. Scientists can then use pliers to squeeze and crimp the hair in place.

Researchers are testing both devices on wild bears in Churchill, Manitoba, and on bears housed at zoos and aquariums. The verdict is still out on which option is better, and Polar Bears International expects the testing phase to last several more years. Ultimately, by making design modifications based on their experimental learnings, they hope to tweak the devices so they will stick to the bears’ fur for at least 270 days, which is the lifespan of the tracking devices themselves.

But even if they can’t get the sticky devices to stay attached to bears for the full 270 days, the gadgets will still be useful for gathering some amount of data on males and young bears, which is currently lacking. They’re also promising for short-term tracking situations, such as “when a bear has entered a community, been captured and released, and we want to monitor the animal to ensure it doesn’t re-enter the community,” says B.J.

“Bear-dar” detection systems

Radar Tower For Detecting Polar Bears
Scientists are testing several radar systems designed to detect approaching polar bears. Erinn Hermsen / Polar Bears International
When humans and polar bears meet, the encounters can often end in tragedy—for either the bear, the human or both. Conflict doesn’t happen often, but global warming is complicating the issue. Because climate change is causing sea ice to form later in the fall and melt earlier in the spring, the bears are fasting longer. And, with nowhere else to go, they’re also spending more time on land in the Arctic, where an estimated four million humans live. Some are even seeking out easy calories from garbage dumps or piles of butchered whale remains.

Scientists counted 73 reports of wild polar bears attacking humans around the world between 1870 to 2014, which resulted in 20 human deaths and 63 human injuries. (They didn’t include bear outcomes in the study.) After analyzing the encounters, researchers determined that thin or skinny adult male bears in below-average body condition posed the greatest threats to humans. Female bears, meanwhile, rarely attacked and typically only did so while defending their cubs.

To prevent human-bear encounters, scientists are developing early-warning radar detection systems they’ve nicknamed “bear-dar” to help alert northern communities when a bear is getting close. A handful of promising prototypes are in the works: Some teams of researchers are building the systems from scratch, while others are riffing off technologies that are already in use by the military. They all use artificial intelligence models that may be able to discern approaching bears. Scientists have tested the systems in Churchill, Manitoba, and are now tweaking the A.I. models to be more accurate.

“We’ve already established that the radar sees everything,” B.J. Kirschhoffer says in a statement. “Being able to see is not the problem. Filtering out the noise is the problem. … Ideally, we can train them to identify polar bears with a high degree of certainty.”

As the systems are still in testing, they do not alert members of the community or professional responders. But, eventually, communities may develop custom responses depending on the alerts, says Kirschhoffer.

“For instance, if a bear-like target is identified 200 meters out, send a text message,” he says. “If a bear-like target is identified 50 meters out, blink a red light and sound a siren.”

Synthetic aperture radar

Scientists are highly interested in polar bear dens—that is, the cozy nooks female bears dig under the snow to give birth to cubs—for several reasons. Denning, which occurs each year from December to early April, is the most vulnerable time in the life of youngsters and mothers. Though they’re accustomed to covering huge amounts of territory to find prey, mother bears hunker down for the entire denning period to protect their cubs from the Arctic elements and predators. Studying bears at den sites allows researchers to gather important behavioral and population insights, such as the body condition of mothers and cubs or how long they spend inside the den before emerging.

Scientists also want to know where dens are located because oil and gas companies can inadvertently disturb the dens—and, thus, potentially harm the bears—when they search for new sources of fossil fuels. If researchers and land managers know where polar bear dens are located, they can tell energy companies to steer clear.

But finding polar bear dens on the snowy, white, blustery tundra is a lot like finding a needle in a haystack. Historically, scientists have used low-tech methods to find dens, such as heading out on cross-country skis with a pair of binoculars or using dogs to sniff them out. But those options were often inefficient and ineffective, not to mention rough on the researchers. For the last few years, scientists have been using a technology known as forward-looking infrared imagery, or FLIR, which involves using heat-sensing cameras attached to an aircraft to detect the warm bodies of bears under the snow. But FLIR is finicky and only works in near-perfect weather—too much wind, sun or blowing snow basically renders it useless. What’s more, if the den roof is too thick, the technology can’t pick up the heat inside. Tom Smith, a plant and wildlife scientist at Brigham Young University, estimates that aerial FLIR surveys are 45 percent effective, which is far from ideal.

But a promising new technology is on the horizon: synthetic aperture radar (SAR). Affixed to an aircraft, SAR is a sophisticated remote-sensing technology that sends out electromagnetic waves, then records the bounce back, to produce a radar image of the landscape below. SAR is not constrained by the same weather-related issues as FLIR, and it can capture a huge swath of land, up to half a mile wide, at a time, according to Smith.

Scientists are still testing SAR, but, in theory, they hope to use it to create a baseline map of an area during the summer or early fall, then do another flyover during denning season. They can then compare the two images to see what’s changed.

“You can imagine, with massive computing power, it goes through and says, ‘These objects were not in this image before,’” says Smith.

Artificial intelligence

Getting an accurate headcount of polar bears over time gives scientists valuable insights into the species’ well-being amid environmental changes spurred by climate change. But polar bears roam far and wide, traveling across huge expanses of sea ice and rugged, hard-to-reach terrain in very cold environments, which makes it challenging, as well as potentially dangerous and expensive, for scientists to try to count them in the field. As a result, researchers have taken to the skies, looking for the bears while aboard aircraft or via satellites flying over their habitat. After snapping thousands of aerial photos or satellite images taken from space, they can painstakingly pore over the pictures in search of bears.

A.I. may eventually help them count the animals. Scientists are now training A.I. models to quickly and accurately recognize polar bears, as well as other species of marine mammals, in photos captured from above. For researchers who conduct aerial surveys, which produce hundreds of thousands of photos that scientists sift through, this new technology is a game-changer.

“If you’re spending eight hours a day looking through images, the amount of attention that a human brain is going to pay to those images is going to fluctuate, whereas when you have a computer do something … it’s going to do that consistently,” Erin Moreland, a research zoologist with the National Oceanic and Atmospheric Administration, told Alaska Public Media’s Casey Grove in 2020. “People are good at this, but they’re not as good at it as a machine, and it’s not necessarily the best use of a human mind.”

To that same end, researchers are also now testing whether drones work to capture high-resolution images and gather other relevant data. Since they don’t require onboard human pilots, drones are a safer, more affordable alternative to helicopters; they’re also smaller and nimbler, and tend to be less disruptive to wildlife.

Treadmill and swim chamber

Researchers want to understand how much polar bears exert themselves while walking across the tundra or swimming through the Arctic Ocean. To get a handle on the marine mammals’ energy output on land, Anthony Pagano, a biologist with the United States Geological Survey, built a special heavy-duty polar bear treadmill. Study collaborators at the San Diego Zoo and the Oregon Zoo then trained captive polar bears to walk on it. Using shatterproof plastic and reinforced steel, the team constructed a 10-foot-long chamber that encased a treadmill typically used by horses. The 4,400-pound contraption also included a circular opening where researchers could tempt the bears into walking with fish and other tasty treats.

As a follow-up to the walking study, Pagano and biologists at the Oregon Zoo also measured the energy output of the bears while swimming. To do so, they developed a polar bear-sized swim chamber, complete with a small motor that generated waves to simulate the conditions the bears might encounter in the ocean.

Together, the two technologies helped scientists learn that bears expend more energy swimming than walking. Polar bears are good swimmers, but they’re not very efficient ones, thanks to their relatively short arms, their non-aerodynamic body shape and their propensity for swimming at the water’s surface, where drag is greatest. In a world with shrinking sea ice, polar bears likely need to swim more to find food and, thus, will burn precious calories, which could cause them to lose weight and lower their chances of reproducing—decreasing the species’ chances of survival.

Together, these and other technologies are helping researchers learn how polar bears are faring as the climate evolves. This knowledge, in turn, informs conservation decisions to help protect the bears and their environment—and the health of the planet more broadly.

“We need to understand more about how the Arctic ecosystem is changing and how polar bears are responding to loss of habitat if we are going to keep them in the wild,” says B.J. Kirschhoffer. “Ultimately, our fate is tied to the polar bear’s. Whatever actions we take to help polar bears keep their sea ice habitat intact are actions that will help humans protect our own future.”

,

Read More »



How Tracking Technology Is Transforming Our Understanding of Animal Behavior

Via The Conversation, a look at how tracking technology is transforming our understanding of animal behavior:

Biologging is the practice of attaching devices to animals so that scientific data can be collected. For decades, basic biologgers have been used to relay physiological data including an animal’s heart rate or body temperature. But now, new technologies are affording scientists a more advanced insight into the behaviour of animals as they move through their natural environment undisturbed.

The tracking of individual animals also provides access to remote locations that are difficult to study. In particular, science has only a limited knowledge of marine environments – the surface of the moon has been mapped and studied more extensively than our own ocean floor.

But researchers have recently fitted small video cameras to the dorsal fins of tiger sharks in the Bahamas. The footage led to the discovery of the world’s largest known seagrass ecosystem, and has extended the total known seagrass coverage by more than 40%. Seagrass ecosystems are important carbon stores, home to thousands of marine species, and can provide a buffer against coastal erosion. Conservationists are now better placed to protect these important ecosystems as a result of biologging.

Here are four more examples of humans working with animals – from dragonflies and ospreys to hedgehogs and jaguars – to improve our understanding of wildlife behaviour and numbers around the world, and how best to protect them.

1. Hedgehog protection
Rural hedgehog populations in Britain declined by up to 75% between 1981 and 2020. Conservationists require more information on their movement and behaviour to inform future efforts to protect this endangered species.

Between 2016 and 2019, 52 hedgehogs were fitted with GPS trackers programmed to record the location of the hedgehog every five minutes throughout the night. The tracking data indicated that male hedgehogs travelled longer distances than females, and would often move several kilometres to find a mate. Male hedgehogs are therefore more vulnerable to road mortality. Research like this can inform strategies such as building wildlife tunnels that enable hedgehogs to bypass busy roads.

Tracking data has also revealed that rural hedgehogs travel further each night in search of food than urban hedgehogs. This highlights the importance of urban gardens as a hedgehog habitat, and supports the use of hedgehog tunnels to connect gardens.

These studies used GPS trackers that store data on the device, meaning each animal had to be recaptured to retrieve the information. This is fine for animals such as hedgehogs that do not roam far, but it can be a challenge when studying migratory animal species.

2. Osprey migration
Scientists studied birds prior to biologging by fitting them with wing tags so they could be identified individually from a distance. But information about their location relied on researchers repeatedly finding the same bird.

Ospreys are migratory birds of prey that feed primarily on fish. They were persecuted into extinction in the UK in the 1800s, before being reintroduced to England in 1996. However, the absence of accurate data regarding ospreys’ movement has made it difficult to identify their wintering grounds and migratory stopover sites.

Two UK conservation charities, the RSPB and the Roy Dennis Wildlife Foundation, began osprey satellite tracking projects around 2007. Data on an osprey’s location, orientation, altitude and speed has provided researchers with information about their migration routes and wintering grounds.

Such information has aided measures to protect ospreys throughout their migratory range. These include education programmes to inspire young conservationists in the UK and Gambia, countries at opposite ends of an osprey’s migratory pathway.

Biologging has also unveiled peculiarities in the behaviour of ospreys. For example, one bird was found to have hitched a ride on cargo ships during its annual migration.

3. Flying insects
Biologging devices are generally large to account for a battery. So while attaching them to larger animals is relatively straightforward, studying insects has required the development of miniature devices.

Insects are among the world’s smallest flying migrants – monarch butterflies and green darner dragonflies migrate south from Canada to the US each year. Researchers fitted small automated radio transmitters (weighing less than 300mg) to these insects.

Their movement over long distances was then monitored through a network of more than 1,500 automated receiver towers spread across the American continent. The towers record the biologgers within a 10km proximity.

The data revealed that the insects travelled distances of up to 143km each day at speeds of over 20 metres per second. This exceeded known daily travelling distances for the darner dragonfly. Warmer temperatures and wind assistance also allowed the insects to migrate at a faster pace.

4. Tracking from space
The Icarus project involves researchers attaching transmitters to a variety of animal species. These transmitters send data to a receiver in space which then transmits the information back to a ground station, from where it is sent to relevant researchers.

This reduces the delay for data processing and device relocation, and allows the immediate availability of behavioural and physiological data on a global scale. Since March 2021, the project has tracked the movements of 15 species worldwide, including the Saiga Antelope, fruit bats and Jaguars.

The information can be used to predict the impacts of environmental change. Identifying which habitat types are selected or avoided can reveal the most productive habitats for endangered species. The behavioural response of animals to ecological changes, such as a warmer Arctic, can also be monitored.

Data from the project may allow scientists to use certain animal species to predict disaster events. For example, research has found that some animals exhibited behavioural changes immediately before Japan’s 2011 earthquake.

Icarus researchers also suggest that disease transmission hotspots could be identified using biologgers, which could help to map the spread of viruses.

Biologging has allowed for the protection of various animal species and environments by widening our knowledge of animal behaviour. But remote animal tracking may also allow humanity to be better protected from natural disasters in the future.

,

Read More »


  |  Next Page »
ABOUT
Networked Nature
New technical innovations such as location-tracking devices, GPS and satellite communications, remote sensors, laser-imaging technologies, light detection and ranging” (LIDAR) sensing, high-resolution satellite imagery, digital mapping, advanced statistical analytical software and even biotechnology and synthetic biology are revolutionizing conservation in two key ways: first, by revealing the state of our world in unprecedented detail; and, second, by making available more data to more people in more places. The mission of this blog is to track these technical innovations that may give conservation the chance – for the first time – to keep up with, and even get ahead of, the planet’s most intractable environmental challenges. It will also examine the unintended consequences and moral hazards that the use of these new tools may cause.Read More