Archive for June, 2019

The Rise of SeaTech: An Internet of Fish

Via GreenBiz, a look at the rise of SeaTech:

Someday we’ll have an Internet of Fish. Underwater sensors, robots and cameras will reveal sea creatures to catch and avoid, changing ocean conditions and goings-on in farmed fish pens — all at the tap of an app. Someday we won’t stare at the seafood counter wondering if a “halibut” is really a halibut and where it came from. Someday methane-eating bacteria will clean the atmosphere and produce fish feed ingredients in the process.

That day is on the horizon — and you don’t even have to squint.

The information technology and biotech revolutions were slow to reach the over $390 billion global seafood industry, but now they are surging in to join an upwelling of technological innovation within the industry, from land-based fish farming to deep-sea fishing. Seatech, with its potential to address urgent needs such as climate change adaptation, supply chain transparency and sustainable fishing and aquaculture, promises to be at least as big an opportunity as the agtech wave that preceded it.

The Internet of Fish comes together

It’s been clear for a while that an Internet of Fish could bring all kinds of benefits, including better fisheries management, more productive and lower-waste fishing and traceable fish consumers can feel good about. But only recently has connecting all the elements of seafood’s supply chain — under the water, on the water and on shore — emerged as a realistic goal. Just 10 years ago, underwater cameras were super expensive, and refining other electronics for underwater operation wasn’t a priority. Now rafts of submersible robots, cameras and sensors are sending critical data to phones and computers on boats and on land, allowing real-time decision making.

The robots patrol open-ocean fish farms (PDF), recording the health, size and feeding habits of fish within the net pens, along with environmental conditions. They can even fix frayed nets and remove waste. Cameras in net pens and onshore aquaculture tanks keep an electronic eye out for potential problems so farmers can take preventive steps, while cameras on fishing gear let fishers see what’s in the water before they drop their nets. That helps them avoid bycatch and keep fisheries open. 

Tools that gather big data from wide swaths of the ocean can make targeted fishing even more effective. The National Oceanic and Atmospheric Administration’s EcoCast tool, for example, draws on-location reports and satellite measurements of ocean conditions to show West Coast fishers where they are most likely to find swordfish and least likely to snag turtles and other threatened species. The key is making the data available in real time so that fishing boats can use it on the water.

Fish farmers are also benefiting from new data-sharing tools. NOAA’s National AquaMapper collects over 100 aquaculture-relevant geospatial data types in a web-based tool for exploring, siting and permitting offshore aquaculture operations. The tool can spare farmers months of back-and-forth paperwork with multiple agencies.

Putting the ‘see’ in seafood’s supply chain

Storied seafood has been on the industry’s menu for some time. Forward thinkers realize people who care about how their coffee got to their cup also want to know how their seafood ended up on their plate. Consumer-facing companies that work directly with fishers and farmers already can tell that story, but they’re a tiny portion of the market. For the industry at large, seeing through seafood’s more typically long, murky supply chains has been a challenge.

A whole suite of traceability and transparency technologies (PDF) is poised to change that. Companies developing these tools are small-scale at this point, but the sheer number and diversity of technologies popping up shows it is possible for seafood buyers to track where a fish was caught, the dock it was hauled up on, the temperature it’s been kept at and other meaningful data. ThisFish(a former Fish 2.0 finalist), for example, traces seafood on its journey from water to table using software that lets each handler in the chain upload information on each coded fish. The system operates in Canada’s east and west coast fisheries.

Portugal-based Bitcliq (another Fish 2.0 alumnus) is using a blockchain platform to trace fish from catch to dock. It’s also connecting fishing fleets with retail buyers, enabling on-the-spot purchases. Blockchain proponents think the shared digital ledger, which shows a cryptographically protected, time-stamped history of data uploads and transactions, has the potential to transform seafood supply chains worldwide. In addition to providing traceability, blockchain technology could make seafood trade financing viable: With reliable supply chain information and a range of blockchain solutions available, financial institutions could build better predictive models and develop finance and insurance products matched to the seafood industry’s real risks and needs.

Hooking up automated data capture solutions incorporated in packaging to Internet of Fish data coming from the water will be central to advancing blockchain adoption and other traceability solutions. Data capture by sensors, robots, computer vision and IoT systems overrides the problem of human error (or intentional fraud) in supply chain reporting, and expands the types of data available. In the aquaculture industry, big companies such as Amazon and Cargill are already starting to digitalize the salmon feed supply chain to trace feed sources.

The convergence of traceability and transparency technologies will open a path to real progress on issues such as mislabeling, illegal fishing and labor violations by revealing a full picture of seafood’s fragmented supply chain. The links — small fishing boats and farms, an array of middlemen, international retailers — still will be there, but they’ll be easy to find and connect. As with the web after Google, suddenly we’ll have everything at our fingertips.

Let them eat flies — and bacterial proteins and algae

Better fisheries management and supply chain transparency can only do so much. Aquaculture could relieve the pressure on wild fish stocks while providing good, clean protein to a world increasingly hungry for it — but only if we stop feeding farmed fish with wild forage fish. Advances in biotech could provide the answer here.

Biotech startups focused on algae, bacteria-powered waste solutions and insect proteins target the fish feed market (PDF) because it’s where low-volume production of new nutrients has the highest payoff and market demand. Oil from microalgae is an excellent, scalable fish oil alternative that delivers better animal health and growth rates than vegetable feeds, as well as better tasting, more nutritious fish.

And companies that feed methane, carbon and other industrial byproducts to bacteria in fermentation tanks are pulling out high-quality proteins that rival those in the best fish meals. Black soldier flies and other fast-growing insects that eat food waste also could be an excellent protein source for fish feeds.

Collaboration, not competition, is powering seatech’s rise

Big picture: All these technologies are potentially game-changing innovations for oceans and the seafood sector. But counter to the narrative of cutthroat competition that clings to tech generally, seatech likely will succeed only through combination and collaboration. The market is huge and these are not standalone solutions — they’re specialized pieces of a vast global whole where solutions were needed yesterday.

Growing companies are changing their priorities in recognition of this fact. More than half the companies coming into the Fish 2.0 network seek partnerships alongside investment. We started Fish 2.0 as a competition, but we’ve seen that growth in the sector depends on collaboration. Seatech’s success will lie in solving this equation: the right product plus the right business model plus the right partnerships. The result will be strong returns plus deep positive impact — and that’s a someday we can truly look forward to.

,

Read More »



NASA Tracks Globe’s Changing Water

Via Terra Daily, a look at the use of satellites to track changes in the world’s water:

Water is so commonplace that we often take it for granted. But too much – or too little of it – makes NASA explores our changing freshwater worlds.

Catastrophic flooding in the U.S. Midwest this spring has caused billions of dollars in damage and wreaked havoc with crops, after rain tipped off a mass melting of snow. Seven years of California drought so debilitating that it led to water rationing came to a close after a wet and snowy winter capped off several years of slow rebound and replenished the vital mountain snowpack.

Half a world away, drought in eastern Australia so depleted the wheat crop that it had to be imported for the first time in 12 years. In eastern Africa and the Middle East, some of the most severe drought conditions on Earth are contributing to stressed crops across Somalia, Sudan, and Yemen.

Whether concerned with floods, droughts, or the status and quality of water supplies, addressing the water-related needs of humans on Earth starts with knowing where the water is. With unique views from space, NASA is at the forefront of studying and monitoring this most precious resource that is constantly on the move.

Researchers use data from satellites, aircraft, and other efforts, to find out where and when water is available around the globe, how much, and how are those patterns changing. They then figure out how to best use that data and get it into the hands of the people who need it most.

Over the next few weeks, we’ll be exploring areas of NASA research into Earth’s freshwater and surveying how those advances help people solve real world problems.

NASA and its partners are using satellites to revolutionize our ability to track and understand the flow of freshwater around Earth – whether it is in the atmosphere, at the Earth’s surface, or underground. In the last two decades, freely available NASA datasets have been used for extensive research into the movement, distribution, and interaction of each part of the water cycle worldwide.

It’s a complex cycle: Evaporating from warm tropical oceans, freshwater condenses into clouds, circulating on the winds where a portion of it falls as rain or snow. On the ground, freshwater is stored in ice, snow, rivers and lakes. Or, it soaks into the ground, disappearing from view to infiltrate into soils and aquifers. Or, before it disappears from view, it can evaporate back to the atmosphere, where moisture is tightly related to Earth’s energy flow, which in turn influences weather patterns that govern freshwater’s distribution.

“Fresh water is critically important to humans, both in obvious ways and in unseen ways such as moving heat around Earth’s entire climate system,” said Jared Entin, terrestrial hydrology program manager in the Earth Science Division at NASA Headquarters, Washington. “With our current satellites, we are now making great progress in pinning down both the detail needed for local water decisions and the global view essential to better understanding our changing climate.”

Researchers funded by NASA have used satellite and airborne data to better inform existing tools for flooding, drought forecasts and famine relief efforts, and for planning and monitoring regional water supplies. These efforts are tackling some of the most pressing needs of people around the world.

These efforts are shaped by local geography and specific user needs to ensure they address freshwater data that are most valuable to communities. For this reason, NASA supports a number of water-management applications that are customized to support different regions. For example, NASA’s Western Water Applications Office works with various entities in the western U.S., including state governments, tribal nations, and private industries to track the impacts of drought on agriculture and general water supplies.

Abroad, NASA partners with the U.S. Agency for International Development through the SERVIR program to provide satellite data, computing tools, and training to local partners that improve local flood forecasting in Africa and assess climate impacts on mountain snow packs in the Himalayas, among other efforts.

These programs are but a few examples of many NASA-supported projects. Hundreds of other researchers, government agencies, and non-profits develop their own water-management tools and applications using NASA’s free and open datasets.

Water from Snow
NASA is improving on existing and developing new remote sensing methods that can reveal how much water is stored in mountain and seasonal snowpack – one of the world’s most vital sources of freshwater. More than a billion people, spanning multiple continents, rely on water from mountain snow for their water supplies that support drinking water, farming, and even hydroelectric power.

Snowfall patterns shift over time, however, both year-to-year from natural variability and due to long-term climate effects. With persistent human demands, the ability to accurately measure how much water is in mountain snowpack becomes an even more critical capability.

Through the Airborne Snow Observatory program, NASA and California’s Department of Water Resources use instruments mounted on airplanes to create high resolution estimates of snow water content for priority watersheds in the Western U.S. The collected data helps determine the timing of the spring melt, which has downstream effects on hydroelectric power generation and planning for how much water can be held in reservoirs.

NASA is also focused on the long-term development of tools to measure water in snow through an airborne field campaign called SnowEx. This type of field campaign connects detailed measurements of snow in the Colorado Rocky Mountains taken by researchers on the ground to remote sensing observations made by aircraft flying over the ground sites. The connections made from these highly detailed datasets will help scientists design future satellite missions that will make similar measurements from space.

Airborne snow measurements, as well as other programs, complement long-term regional observations from NASA satellites that create estimates for entire mountain ranges in the Western U.S. and around the world.

Water in the Sky
When we think of water on Earth we may think of the ocean, rivers and lakes. But as water cycles around the planet, the atmosphere holds moisture, creating a reservoir in the sky that periodically condenses into rain and snow.

NASA is part of a team from more than a dozen countries whose satellites are working together to deliver global rainfall data every half hour. Over land, rain has immediate impact as it soaks into the ground, which supports crops.

Rainfall data is one of the most essentia toolsl for monitoring freshwater’s movement around the planet, and goes into applications that touch people’s everyday lives, including weather forecasting, crop monitoring, and flood prediction.

For many parts of the world, especially developing countries and hard-to-reach terrain where ground measurements are sparse to non-existent, these global NASA datasets are sometimes the only consistent source of information on rainfall and soil moisture.

Water from Below
NASA satellites monitoring Earth’s gravity field have given scientists insight into the movement of large masses such as ice and water – including water hidden underground. This global look at changes to the amount of water storied in aquifers, massive underground freshwater reservoirs, has revealed some concerning trends. Of the 37 largest aquifers on Earth, a third of them are being depleted by communities pumping the water faster than it recharges from rainfall.

These water declines occur primarily where agriculture and aquifers coincide, and where human water demands can easily exacerbate conditions of periodic drought. Among those most stressed in the past decade are the Central Valley of California, the Indus Basin in northwestern India and Pakistan, and the Arabian Aquifer System in Saudi Arabia.

About 70% of all freshwater on Earth is used for irrigated agriculture. Underground aquifers are water sources that act like waiting bank savings accounts, providing a dependable supply and making agriculture possible in arid areas where significant rain events may only occur once a year and during droughts when surface water is scarce.

We do not know the full extent of these underground water aquifers or when they may run dry, but understanding the change in available water that occurs both seasonally and throughout the satellite record helps decision-makers manage their resources.

In addition to witnessing the effects of agriculture, the satellite data show the effects of climate change, most notably in the decline of sea ice and ice sheets at the poles. They also observe the ups and downs of more natural variability that reflects a region’s span of wet or dry years.

As the global satellite record extends into the future, researchers and water managers will continue to monitor freshwater hidden below as climate patterns shift and human demands grow.

,

Read More »


  |  Next Page »
ABOUT
Networked Nature
New technical innovations such as location-tracking devices, GPS and satellite communications, remote sensors, laser-imaging technologies, light detection and ranging” (LIDAR) sensing, high-resolution satellite imagery, digital mapping, advanced statistical analytical software and even biotechnology and synthetic biology are revolutionizing conservation in two key ways: first, by revealing the state of our world in unprecedented detail; and, second, by making available more data to more people in more places. The mission of this blog is to track these technical innovations that may give conservation the chance – for the first time – to keep up with, and even get ahead of, the planet’s most intractable environmental challenges. It will also examine the unintended consequences and moral hazards that the use of these new tools may cause.Read More